
Wrocław University of Science and Technology
Faculty of Electronics, Photonics and Microsystems

Field of Study: Electronic and Computer Engineering (ECE)

BACHELOR THESIS

Title of Thesis:
A web application that helps in the organization
and analysis of offers from e-commerce stores.

Author:
Konrad Błaszczak

Supervisor:
dr inż. Wojciech Domski, K29W12ND02

WROCŁAW 2021





Contents

1 Introduction 3
1.1 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Data 7
2.1 Acquiring data from websites . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Collecting and data parsing of the document object model . . . . . . . . . 8
2.3 Multithreading in speeding up the data collection process . . . . . . . . . . 9

3 Database 11
3.1 Data indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Mapping and analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Data searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Collected Data 17
4.1 Data analysis and visualization . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Web application 21

6 Conclusion 25

Bibliography 25

Appendix A 27





Chapter 1

Introduction

With a development of internet, digital payment, transport, logistics, security, processing
and storage of data, number of e-stores have highly increased in last years [4]. Nowadays,
almost every company that works in retail has its own selling platform in the internet,
not to mention big businesses such as Amazon, eBay or Aliexpress that have major share
in e-commerce market [4]. As a client it is impossible to track desired product on all
platforms or to analyze its price in longer period of time e.g. to predict when another
discount will set or to check if store uses shady practice of rising a price of product then
to discount it to normal price and label it as promotion.

Solution to this problem is to gather data periodically from this websites and save it
in one place then analyze to achieve desired results. There is a technique in program-
ming called web scraping. Scraping a website means to download a website structure and
extract valuable data. Once fetched content of a page can be parsed (analysis of string
of symbols), reformatted, searched and sent to spreadsheet or database. Web scraping
usually takes information from website code and reuse that data in a different purpose for
example like previously mentioned problem with price of products. Scraping can be used
to periodically gather information from desired shop and save that data locally within
database. Web pages are built using text-based languages such as HTML, JavaScript,
and frequently contain an useful and valuable data in text form. Unfortunately, almost
all websites are designed for human end-users and not for machines. As a result there
are many specialized tools and software used to prevent bots from scraping a website.
To prevent detection web scrapes use computer vision or natural language processing to
simulate human browsing to enable content gathering from webpages. Most sites have
minimal security in the form of Cloudware services or/and captcha to prevent bots from
their servers. This is important in web scraping because the program sends a request
to the site, and that means the more data is needed, the more requests will be sent to
the site. In conclusion if a bot loads site with too many requests, previously mentioned
security measures will be triggered and will prevent any further scraping, and in worst
case scenario administrator of the site can ban bot by its IP address and permanently
prevent any future scraping of a given website.



4 1. Introduction

Web scraping involves a various problems such as I/O mechanism, multithreading,
communication, task scheduling, duplication and many more. Coding language, frame-
work and used packages will have a significant impact on how effective scraper is. To
choose a proper language, few things were considered to be look for: flexibility, ability to
feed database, scalability, maintainability. Python is mostly know to be best language for
web scraping application. It can handle many web scraping related processes smoothly.
Requests library is a standard for making a HTTP requests in Python, with that request
can be sent for website and as a result it whole code is obtained in text form for further
modification. Beautiful Soup is one of the most recognizable frameworks for web scraping
used in Python language. It was designed for a fast and highly efficient web scraper. No-
table features are pythonic idioms for navigation, searching and modifying a parse tree.
It works with popular parsers such as lxml or html5lib which means there is possibility
to try different approaches for parsing website.

This project needs to collect data from internet and manage database to storage col-
lected data in some form. In Python data can be storage in list, dictionary, set or tuples.
List is used to store multiple items in one variable, list items are ordered, changeable, and
allow duplicate values. Dictionary is used to store data values in key:value pairs and it is a
collection which is ordered, changeable and does not allow duplicates. Set is used to store
multiple items in a single variable and it is a collection which is unordered, unchangeable,
and unindexed. Tuple is used to store multiple items in a single variable. A tuple is a
collection which is ordered and unchangeable. For collected data in this project the most
suitable form of storing data was dictionary. Due to that fact the best database will be
Elasticsearch which saves data as JSON documents. Elasticsearch is a highly scalable
open-source full-text search and analytics engine. It allows to store, search, and analyze
big volumes of data quickly and in near real time. Elasticsearch provides system based
on top of Apache Lucene written in Java for indexing and automatic type guessing which
is suitable for this kind of data. Best advantages of Elasticsearch are:

• scalability,

• fast performance,

• multilingual searching,

• documents in JSON format,

• auto-completion and instance search.

Elasticsearch has also one very important feature that is key for this project. It has ded-
icated Python client REST API, which means Python script can communicate directly
with Elasticsearch without any third party software.

Web app is software application that runs on a web server. Web applications are ac-
cessed by the user through a web browser with an active network connection which means
controlling code or getting results from any device. Beacuse project was written in Python
two framework were considered: Django and Flask. Django is better suited for this project
due to being full-stack web framework. Django’s biggest advantage is built-in basic func-
tionalities that in Flask must to be written from scratch or to be installed from external
source.



1.1. Thesis 5

1.1 Thesis
The main goal of this project is to collect monthly worth data from e-commerce store,
observe changes in the products and analyze data to indicate if product is worth buying.





Chapter 2

Data

2.1 Acquiring data from websites
Today, the main component of almost every website is the HyperText Markup Language,
or HTML for short. It is used to display documents in a web browser and is very often
used with other technologies such as Cascading Style Sheets (CSS) and scripting languages
like Java Script or PHP. When a browser loads a web page it creates an document object
model based on HTML. See Fig.1 for more details.

Figure 1 Document Object Model

This structure makes it possible to access individual page elements. An element can be
found in several ways: by a class identifier, by a tag name, by a class name, by CSS
indicators or by a group of HTML elements.
To get the document object model, request to the page server is required by using either
HTTP (Hypertext Transfer Protocol) or HTTPS (Hypertext Transfer Protocol Secure).
Both protocols belong to the application layer in the ISO/OSI model. The difference
between the two is that the HTTPS protocol is encrypted with a TLS (transport layer
security) or SSL (secure socket layer) technology.



8 2. Data

The HTTP protocol has several types of requests that can be send to the server:

• GET is used to retrieve the whole resource indicated by the URL,

• POST is used to receive data from a client to a server,

• PUT is used to receive data from the client to the server,

• PATCH updates page resource data,

• HEAD is a request that retrieves information about a resource,

• DELETE is a request to delete the selected resource,

• TRACE is used to analyze the communication channel,

• OPTIONS informs about available options and requirements of the, communication
channel,

• CONNECT is a request intended for proxy servers.

In Python, the most popular package for sending HTTP requests is the Requests package
created in 2011 by Kenneth Reitz and published on the Apache 2.0 license [5]. The
Requests library uses the same key verbs as the HTTP protocol. This means that the
method names used by the HTTP protocol and the Requests package are the same. In this
project, the Requests package was used to retrieve through the GET method a document
object model containing a list of products from e-commerce store.

2.2 Collecting and data parsing of the document object
model

The goal of the project was to collect as much data as possible from the online store. The
first obstacle was to collect all URLs containing the list of products, because almost all
online stores operate on categories and subcategories. It happens that even subcategories
have their own subcategories which prolongs the process of redirecting to the product
page. The solution to this problem was to write a script that checked whether a given
URL contained a list of products. The program ran on 2 lists and 10 threads running in a
while loop. First list collected all URLs of categories and subcategories that are available
on the site, while the second list collected all URLs, which had a class with a special
identifier, which contained a list with products and number of pages. The condition to be
added to a particular list was the existence of previously mentioned class with products.
If the condition was true the URL was put in the 2nd list and removed from the 1st list,
if the condition was false it meant that other subcategories were available, so the script
was collecting all URLs of subcategories, adding them to the 1st list and removing the
checked URL. The loop ended when 1 list was cleared of all URLs. It then saved all the
URLs from the 2nd list including the maximum page count information to a CSV file. In
this way it was able to significantly reduce the data collection time.

The second problem was the number of requests sent to the server. All the URLs contain-
ing products after the scraping were in number on 1330. Some websites allow to increase
the number of displayed products per page, by passing e.g. limit attribute in the URL.



2.3. Multithreading in speeding up the data collection process 9

This procedure meant to decrease in the number of pages, which translates into the num-
ber of HTTP requests sent to the server during daily data collecting. Online stores very
rarely change their layout what means that this script does not have to be run each time
before actual data collecting from products.

The data that was collected for each product included: name, description, price, cur-
rency, position on the page, link to the product, rating and voting. Like the previously
mentioned script, the main data collector also operated on 10 threads. The code sent 10
requests to the page, if the status was 200 it meant that the page was reachable and its
data could be collected. Otherwise, the thread dropped the address and waited for a new
one. The interval between subsequent requests to the server was 2 seconds in order not to
overload the page server. The main data collector used BeauifulSoup and the lxml parser
to search for the previously mentioned attributes. Each attribute required minor editing
adjustments such as deleting unicode characters, extra spaces, or characters marks that
start a new line. After collecting all data from a given URL, the product lists are saved
to CSV files.

2.3 Multithreading in speeding up the data collection
process

Multithreading is a feature of operating systems that allows several tasks to be performed
within a single process. After the introduction of multithreading, the data collection time
was significantly reduced. When the script collecting data was running on a single thread,
the working time was 6 hours and 34 minutes, while on ten threads the program finished
working in 40 minutes working with the same dataset. The advantages of a multithreaded
program over a multiprocess program were:

• many threads in the same process communicate with each other faster and more
freely than processes with each other. This is because all threads in a process share
the same virtual address space, meaning they have access to the same variables or
objects and use the same system resources,

• threads need less memory to operate than separate processes,

• the work of threads can be divided into 3 phases: the invocation of the thread, the
execution of the task and the return of the result, threads also have a command
counter that tracks where the thread is running,

• a thread can be put to sleep or interrupted without affecting concurrent threads
running at the same time.

An important factor in implementing a multi-threaded system was to sort all URLs by
the maximum number of pages. When URLs were not sorted, a situation occurred where
9/10 threads finished their work in 10 seconds, while the last thread still had time of work
left. This caused unnecessary downtime in the application. Thanks to sorting addresses
retrieved by the code had similar number of pages in each run, which eliminated the
downtime.





Chapter 3

Database

Elasticsearch is an open source server search engine based on the Lucene library that can
be interacted with through a RESTful web interface API. Elasticsearch stores documents
based on JSON (JavaScript Object Notation) technology. In this project, the Elasticsearch
was used to store and quickly access data collected from an e-commerce store. Documents
are the smallest pieces of data, while not considering fields in them. Documents are stored
in shards. There are 2 types of shards in Elasticserach. Primary shards that contains
data and replica shards that are a copies of primary shards. A Sharding system is used
to evenly distribute data and to spread a load. Shards are collected into indexes and
allocated in nodes. Primary and replica shards cannot be stored in one node, because
replica shards substitute primary ones in case of node failure. Group of nodes with
the same cluster.name attribute is called a cluster, as nodes join or leave the cluster
recognize itself to automatically redistribute data across all available nodes without user
intervention. It is important to keep cluster status in good condition. There are 3 statuses
that indicated cluster health. Green indicates that everything is correctly allocated and
ready for searching. Yellow indicates that one or more replica shards are not allocated.
In this status there is not loss of data while searching, but problem should be resolved
as soon as possible. Red status indicates that one or more primary shards (and all of its
replicas) are not properly allocated, in this status there is loss of data while searching,
and indexing a documents in this shard will return error.

3.1 Data indexing

To index data Elasticsearch uses structure called an inverted index. This structure allows
to perform fast full-text searches [3]. Inverted index contains a list of all unique words
that appear in any document and for each word it contains a list of documents in which it
appears. For proper work inverted index needs to know about all documents in collection.
Inverted index does not need only to contain this two lists, it can also contain much more
e.g. number of times each word appeared in a document, the order of terms or average
length of all documents. Inverted index stored on a hard drive is constant which means
it cannot be changed, but this immutability has benefits which cause that inverted index
to be of high performance during read operations.

To make Inverted index updateable a concept called pre-segment search from Lucene
was used. In Lucene a segment is an inverted index, and word index is a collection of
segments plus commit point – a file that list all segments [3]. Pre-segment search is cre-



12 3. Database

ating a new segment from in-memory buffer with overwritten commit point. There is no
possibility to update or delete segments, only possibility to “remove” or “update” segments
is to update a commit point and as a result old segments will not appear in query results.

To send the gathered data to Elasticsearch a Python program was written. It used official
Elasticsearch client for Python. All data gathered by script from chapter 2 were in CSV
files. Program had two inputs from user. It were path to data and date from which day
that data came from. By setting this two variables program was deleting empty CSV files
and merging other documents that contained data into one variable. Then program was
creating an Elasticsearch index with previously annotated name, settings and mappings.

For each day one index was created named after name of an e-commerce store from
which data was collected and timestamp to indicate from which day the data came from.
Each index had 1 shard and 1 replica. This solution was made to easier troubleshoot,
update data and have fewer restrictions on data mapping.

Each document in Elasticsearch contains 3 metadata: _index, _type and _id. Index
indicates from where document comes from. Type, as the object class, is use to create a
separate collection inside the same index but this solution is deprecated and will be no
longer supported in newer versions of Elasticsearch. All documents in this project had
_doc type. ID is an unique identifier for each document. This metadata also can be set
by the user but to avoid repetition autogenerated ID was used instead.

3.2 Mapping and analyzers
For each index, it was important to map the fields properly and use correct text ana-
lyzers for the text type fields. Elasticsearch does not have official support for the Polish
language analyser, the producer recommends using The Stempel Analysis plugin, which
detects plurals of words e.g. searching for the word "telewizory" will find documents
that contain that word in them, both singular and plural form without the plugin results
would only contain the plural form. The plugin had also a stop list, which is a list of
words rejected by the search engine in order to reduce the size of the set. Such words
that are available in this plugin are for example conjunctions, academic titles or personal
pronouns.



3.2. Mapping and analyzers 13

Field name Type Analyzer
name text polish

deatails text polish
price float X

currency keyword X
popularity integer X
rating float X
vote integer X
link keyword X
date date X

Table 1. Mapping used in all indexes.

The difference between keyword and text types can be seen when saving them in in-
verted index. Fields of type text are analyzed before saving. By default it is a standard
analyzer that splits words according to the rules defined by the Unicode Consortium,
removes punctuation and reduces all text to lowercase in order to improve their “search-
ability”. Fields of the keyword type are not subjected to such analysis.

Example of text analyzed by the plugin stempel. Name of product: Konsola SONY
PlayStation 5 + 2 Kontrolery DualSense Czarne + FIFA 22 + PlayStation Plus 365 dni.

token start_offset end_offset type position
konsola 0 7 <ALPHANUM> 0
son 8 12 <ALPHANUM> 1

playstati 13 24 <ALPHANUM> 2
5 25 26 <NUM> 3
2 29 30 <NUM> 4

kontroler 31 41 <ALPHANUM> 5
dualsens 42 51 <ALPHANUM> 6
czarny 52 58 <ALPHANUM> 7
fif 61 65 <ALPHANUM> 8
22 66 68 <NUM> 9

playstati 71 82 <ALPHANUM> 10
plus 83 87 <ALPHANUM> 11
365 88 91 <NUM> 12
dni 92 95 <ALPHANUM> 13

Table 2. All tokens after analysis.

After analysis, each such token is send to the list in the inverted index. An example
decomposition can be found in Table 3. Inverted index has 3 columns: term, frequency
and document ID. Tokens are assigned to term. Frequency is used in term frequency
indicator that helps calculate relevance which in turn is the key factor in the data mining



14 3. Database

[1]. Lastly the document ID is used in estimating in which document the term appears.
Inverted index is created for each field.

Term Frequency Document ID
2 1 1
22 1 1
365 1 1
5 1 1

czarny 1 1
dni 1 1

dualsens 1 1
fif 1 1

konsola 1 1
kontroler 1 1
playstati 2 1
plus 1 1
son 1 1

Table 3. Inverted index

3.3 Data searching

There are two most important factors considered in searching data with Elasticsearch.
First one is relevance which is to estimate how relevant are results to a given query. It is
calculated with Elasticsearch similarity algorithm which is ratio of Term Frequency and
Inverse Document Frequency (TF/IDF) [3]. Term Frequency parameter is higher for doc-
uments, in which a term appears multiple times. Inverse Document Frequency terms are
less relevant if there are many of them in an index. This parameter is highest for terms
that are most unique in index. Another factor taken in estimating a relevance is field-
length norm. Terms in short fields carries more weight to algorithm than in long fields.
For performance reasons Elasticsearch does not calculate TF/IDF for each document but
for each shard. If data is not evenly distributed then same words will have different score
in each shard. Problem fades when more data appear in the index but to be sure that
data is evenly distributed in this project each index contained only one primary shard
and one replica shard. In Elasticsearch relevance is estimate by field _score in metadata.

Second factor is analysis. It is process to decompose text into separated, normalized
tokens by chosen analyzer in order to create an inverted index. All queries perform rel-
evance calculation but not all perform analysis. Textual queries can be separated into
two groups term-based and full-text. Term based queries are the ones that not perform
analysis part. This type is looking for exact term in inverted index.

Full text queries like match that was used in the project can understand a mapping
of the field. If query field is a keyword, the query string is treated as an exact value. If
query field is a text field then query is passed through same analyzer as a field to produce
a list of tokens that will be used in the search.



3.3. Data searching 15

Match and bool queries were mostly used in this project to search trough data in Elas-
ticsearch. Match query checks a field type if it is a text field or a keyword field. If It is
a text field then analysis is performed for a query string. To find matching documents
and score them. For searching multiple fields at once bool query was used. Bool query
accepts multiple queries clauses under 3 parameters: must, must_not and should. Must
and must_not parameters are simple bool filters. Should parameter tells that indicated
terms are not required but if a document contains them it becomes more relevant in the
search. To calculate relevance score bool query adds all scores from matched must and
should clauses and then divide it by total number of clauses. Clause must_not is not
consider in estimating on of a relevance score its only purpose is to exclude irrelevant
documents.





Chapter 4

Collected Data

The main contribution of the project was to have a history of prices for a given set of
products, in addition to collecting information about the display position on the page, user
reviews (star system with grades from 0 to 5) and the number of votes that formed such
reviews. Data collected in this project were from one e-commerce shop from 1.11.2021
to 24.12.2021. Data were collected within daily routine. The collected set is missing
data from days 7.11.2021, 10.11.2021 and 23.12.2021 due to reasons beyond the author’s
control. Data for each day was collected as CSV files. All data were send to Elasticsearch
and properly indexed with Python script to enable fast searching through it.

4.1 Data analysis and visualization
When the data was collected now it was possible to create visualization (Fig. 2) for each
product to track it changes in time and analysis e-commerce shop behavior. colorcyan
To visualize product history a term query with link was created to search for product in
all indexes. . Price history can indicate whether the promotion is credible e.g price was
not raised a few days before the sale. With price data gathered from longer period of
time there would be possibility to check how often product is set on the sale. Popularity
history can indicate if customers are interested in product on a daily basis and not only in
time of the sale. Combining price and popularity data client can estimate if a product was
set on the sale because it was not that popular with original price. By looking on rating
and voting history client can estimate if rates were high due to voting by real people or
by bots, or in a opposite situation client can check if product was under review bombing.



18 4. Collected Data

Figure 2. Charts displaying history of product

Data analysis is a process of data processing to derive useful information and conclusions
from it. From the collected data where a sample was displayed in the Figure 2, analysis
can be perform to recognize patterns and trends that can be useful during procurement
decision. There is a possibility to seemingly unrelated data turn into one indicator and
estimate a trend for the product. In this project 2 indicators were created. The purpose
of the indicators was to asses whether changes over time will be positive or negative and
have a standardized way in product comparison. First indicator was created as a sum of
multiplied values,

f1(x) =
200 ∗ 1
x1

+
1, 5 ∗ 1
x2

+
x3

5
+

1, 5 ∗ x4

100
(4.1)

where: x1 is product price, x2 is product popularity, x3 is product rating, x4 is vote
rate for the product. Low price and high popularity was most influential in creating this
indicator because these data are the most volatile. After data analysis, the coefficients
were empirically selected. This indicator can be good for comparing two products with
similar features such as product price but it cannot be used for comparison of products
which have significant discrepancy of features. There are many flows in this indicator such
as being favorable to products that has a small price tag. Popularity in this indicator has
big influence only if position of product belongs to the first ten. For products that are
displayed on further pages this variable will close to non-influence on the indicator. To
device a better indicator that can be used for all types of products, data normalization
must be introduced. Normalization is a procedure for pre-processing data to enable cross-
comparison and further analysis. For this purpose a second indicator was introduced.

f2(x) = −5 ∗ (x1(t+ 1)− x1(t))

x1(t)
−0.4 ∗ (x2(t+ 1)− x2(t))

x2(t)
+
x3(t)

10
+
1.5 ∗ (x4(t− 1)− x4(t))

x4(t)
(4.2)

where variables are marked in the same way as in (4.1) equation. By calculating price,
popularity and vote and change scaling them with a reasonable set of weights’ the second



4.1. Data analysis and visualization 19

indicator can be used for comparison of different products. Changes such as price drop,
higher position on page or additional votes might happen if trend is increasing. For first
indicator trend is mostly depended on price changes. By having this two indicators and
raw data visualization one can wait with decision of buying this product and wait for more
favorable conditions. In the Figure 3 the first indicator was visualized. It can be seen
the trend is decreasing, this situation is caused by the price drop. At the same time the
second indicator (Fig. 4) is increasing. This means that the price is rising, but customer
can expect promotion in the near future.

Figure 3. First Indicator

Figure 4. Second Indicator





Chapter 5

Web application

A web application, unlike a desktop application, does not require installation. Web ap-
plication can be opened with an Internet browser to deliver interference for the user to
present information. Biggest difference between web applications and websites is that
websites are mostly used for information purposes and not to interact with an user. In
this project it was important to create a simple user interface that can be accessible
for everyone and from every type of devices. There are many frameworks that provide
tools to create web applications with different programming languages. Ruby on rails is
a framework that is using Ruby language. Angular JS and Express are using JavaScript
language. There is a framework called ASP.NET that is using C# language. Due to the
backend for the project was written in Python and communication with Elasticsearch was
done through the official Python client, a Python-based framework was chosen. There
are two major frameworks that were considered in this project. Django and Flask are two
most popular framework that use Python language for creating web applications. For this
project Django was used to create web interface for this project.

Django is high-level Python web framework that is used in creating web application.
Today, it is one of the most popular web frameworks available, used by the largest web-
sites in the world – Instagram, Pinterest, Bitbucket, DisqusIn [6]. In contrast to its
competitor Flask it has already implemented functions that do not need to be written
from scratch like admin interface, security and performance upgrades, database models,
forms, URL routes, templates and user authentication. Django is based on MVC design
pattern (Model-View-Controller). Model represent how data is organized in the database,
View is what user see while visiting a website, Controller is for controlling a data flow in
application including performing data analysis or more complex tasks on data retrieved
from the Model. For Django model is named MTV (Model-Template-View) [6]. This
model can be divided into two groups: client and server. Client is only able to see a
Template and for server there are Model and View. Django uses requests and response
via HTTP protocol to communicate between client and server sides. The View presents
the model to the client as an HTTP response. In this project user was able to search data
directly in Elasticsearch trough main page template. Two ways of searching data within
Elasticsearch were implemented in the application. First one was with searching via link
from e-commerce store to display its history and second one was to send customized query
to retrieve all items from indexes which suited with query.

Data flow was presented in the Figure 5. User is directed to main page from where a
form is displayed (Fig. 6) to be filled or left empty. After filling the form there are two



22 5. Web application

ways to interact with the web application. First path is to look for the product history. In
this case only data that is sent to View is linked with the product. In the next step data
is sent to function where it is assigned to previously prepared query and sent to Elastic-
search. Results are assigned to lists and returned to View where it is sent to the product
history template to be displayed for the user. The second path is for products searching.
It is similar to the first one but this query can be customized with more features. It needs
to be send to “create query” function in order to construct query with the user input.
The data flow is exactly the same as in the case of the first scenario. Query is sent to
Elasticsearch and results are assigned to lists and then sent back to template. From both
templates it is possible to return to main page and search for an another product.

Figure 5. Web application flowchart

Figure 6. Main site



23

History of a product including its name, description and 4 charts that included how
price, popularity, rating and votes changes over time. Each point can be highlighted to
see detailed data (Fig. 7) To create interactive charts in templates Chart.js.

Figure 7. Price chart history for product

To seek a similar products in database a form from (Fig. 3) can be used. Filled form
on main site sends the user input to create custom queries for Elasticsearch. Name
and description were used for searching in respective fields name and details (Table 1) in
Elasticseach indexes. Filter was used to remove unwanted results for example by searching
a term "telewizory" also many accessories appeared for them such us remote controls or
bases. Sorting was added to make searching more comfortable. Sorting was possible by
price, popularity, rating and votes. Sorting order can also be configured. Example of
displayed data:
Name: Ekspres KRUPS Evidence One EA895E
Description: Typ ekspresu: Automatyczny Moc [W]: 1450 Ciśnienie [bar]: 15 Typ młynka: Stalowy Rodzaj kawy: Ziarnista Dostępne napoje:

Americano, Caffe Latte, Cappuccino, Doppio, Espresso, Herbata czarna, Herbata zielona, Latte Macchiato, Napar ziołowy, Ristretto,
Spienione mleko Funkcje: Spienianie mleka, Regulacja mocy kawy, Regulacja ilości zaparzanej kawy, Wbudowany młynek, Tak, Dotykowy ekran,
Parzenie 2 kaw jednocześnie, Regulacja stopnia zmielenia kawy, Regulacja temperatury kawy, One Touch Cappuccino

Price: 2599.0
Currency: zł
Popularity: 13
Rating: 5.0
Votes: 252
Date: 2021-12-17
Link: https://www.mediaexpert.pl/agd-male/ekspresy-i-kawa/ekspresy-cisnieniowe/ekspres-krups-ea895e-evidence-one

Name: Ekspres KRUPS Evidence EA8901
Description: Typ ekspresu: Automatyczny Moc [W]: 1450 Ciśnienie [bar]: 15 Typ młynka: Stalowy Rodzaj kawy: Ziarnista Dostępne napoje:

Americano, Cappuccino, Doppio, Espresso, Gorąca woda, Herbata czarna, Herbata zielona, Latte Macchiato, Long Coffee, Napar ziołowy,
Ristretto, Spienione mleko Funkcje: Spienianie mleka, Regulacja mocy kawy, Regulacja ilości zaparzanej kawy, Wbudowany młynek, Wskaźnik
poziomu wody, Tak, Parzenie 2 kaw jednocześnie, Regulacja stopnia zmielenia kawy, Regulacja temperatury kawy, One Touch Cappuccino Kolor
: Biały

Price: 1999.0
Currency: zł
Popularity: 17
Rating: 5.0
Votes: 306
Date: 2021-12-17
Link: https://www.mediaexpert.pl/agd-male/ekspresy-i-kawa/ekspresy-cisnieniowe/ekspres-krups-evidence-ea8901-bialy





Chapter 6

Conclusion

The purpose of this project was to design and develop a system that would allow the user
to check the history and trends of a product in and accessible form which in turn would
help in a process of making a buying decision. The project consisted of many elements. A
backend script written in Python that was responsible for web scraping by separating link
and data collecting, time of operation was significantly reduced. By adding many threads
in data collecting this time was reduced even more. Database and search engine used
in this project was Elasticsearch, which allowed to search over a million documents in a
very short time. Due to fact that Elasticsearch is No-SQL database time was saved on
creating high performance SQL database. User interface was created in Django framework
to make it very simple and accessible for everyone. The data was collected from 1.11.2021
to 24.12.2021 with the exception of a few days resulting from problems beyond the author’s
control. The completed engineering project was dictated by the growing demand for sites
such as fakefriday.org. With expansion of database on new shops and additional daily
data whole system has prospects of development in many directions, where the most
important one cohort analysis. Cohort is a term used in statistics and applied sciences,
e.g. demography, to denote a set of objects, extracted from a set due to an event or
process occurring simultaneously for the entire set for the purpose of analysis. This was
a reason why Elasticsearch was used in this project. By full text search there is more
freedom for extracting desired objects from set. Indicators presented in this project in
future can be use for trend analysis which is a part of technical analysis to predict future
trends more precise [2].





Bibliography

[1] C. C. Aggarwal. Data Mining: The Textbook, Springer International Publishing.
2015.

[2] J. D. Charles D. Kirkpatrick II. Technical Analysis The Complete Resource for Fi-
nancial Market Technicians. 2016.

[3] Z. T. Clinton Gormley. Elasticsearch: The Definitive Guide: A Distributed Real-Time
Search and Analytics Engine, O’Reilly Media. 2015.

[4] D. Coppola. E-commerce worldwide - statistics facts, Statista. 2021.

[5] R. Mitchell. Web Scraping with Python: Collecting More Data from the Modern Web,
O’Reilly Media. 2018.

[6] W. S. Vincent. Django for Beginners: Build websites with Python and Django. 2018.





Appendix A

The paper is accompanied by a CD disk containing in individual folders:

• Digital copy of this work.

• Source code for data from Figure 4.

• Source code for web scraping.

• Source code for indexing documents.

• All data gathered from 1.11.2021-24.12.2021.

• Source code for Django web application.

• CSV file containing all URLs for e-commerce shop.


