# Advanced Robot Control Driver implementation on MCU

#### Wojciech Domski

Chair of Cybernetics and Robotics, Wrocław University of Science and Technology

Presentation compiled for taking notes during lecture





- Drivers
  - Introduction
  - Architecture
- 2 Models
  - Models
  - Straightforward implementation
  - Logic with hardware abstraction layer
  - Multiple abstraction layers
  - Driver implemented through system calls
- Software implementation
  - Hardware abstraction layer implementations







## **Driver** (1/1)

#### What is a driver?





Drivers Architecture

- Drivers
  - Introduction
  - Architecture
- Models
  - Models
  - Straightforward implementation
  - Logic with hardware abstraction layer
  - Multiple abstraction layers
  - Driver implemented through system calls
- Software implementation
  - Hardware abstraction layer implementations
- 4 Quiz
  Wroc'aw University
  of Science and Technology





Each driver should contain following functions (depending on the type of a device some can be omitted):

- initialization
- deinitialization
- read/write operations
- control operations







Models Models

- Orivers
  - Introduction
  - Architecture
- 2 Models
  - Models
  - Straightforward implementation
  - Logic with hardware abstraction layer
  - Multiple abstraction layers
  - Driver implemented through system calls
- Software implementation
  - Hardware abstraction layer implementations
- 4 Quiz
  Wro-'aw University
  of Science and Technology





Models Models

# Types of driver implementation (1/1)

- Straightforward implementation
- Logic with hardware abstraction layer
- Multiple abstraction layers
- Driver implemented through system calls







Models Models

# Device representation

In order to allow for multiple presence of devices in the system the state of a single device should be separated from other devices. Therefore, the state of the device should be contained. This can be achieved through creation of a dedicated structure which holds all necessary elements including interfaces through which higher layer can communicate with the device.







- Drivers
  - Introduction
  - Architecture
- 2 Models
  - Models
  - Straightforward implementation
  - Logic with hardware abstraction layer
  - Multiple abstraction layers
  - Driver implemented through system calls
- Software implementation
  - Hardware abstraction layer implementations







# Straightforward implementation

This type of driver implementation characterizes with no separation of hardware dependant interfaces. Therefore, portability is very low and requires a lot of effort to move a driver to a different platform.





- Orivers
  - Introduction
  - Architecture
- 2 Models
  - Models
  - Straightforward implementation
  - Logic with hardware abstraction layer
  - Multiple abstraction layers
  - Driver implemented through system calls
- Software implementation
  - Hardware abstraction layer implementations
- 4 Quiz
  Wroc'aw University
  of Science and Technology





# Logic with hardware abstraction layer

Hardware interface is kept separately from logic of a driver. This kind of implementation characterizes with high portability since only the hardware layer is affected when the code is ported to a different device.





- Drivers
  - Introduction
  - Architecture
- Models
  - Models
  - Straightforward implementation
  - Logic with hardware abstraction layer
  - Multiple abstraction layers
  - Driver implemented through system calls
- Software implementation
  - Hardware abstraction layer implementations
- 4 Quiz
  Wrodaw University
  of Science and Technology





# Multiple abstraction layers

This type of driver implementation characterizes with more than two layers of abstraction. Usually, there are present two layers – logic layer and hardware layer.





- Orivers
  - Introduction
  - Architecture
- 2 Models
  - Models
  - Straightforward implementation
  - Logic with hardware abstraction layer
  - Multiple abstraction layers
  - Driver implemented through system calls
- Software implementation
  - Hardware abstraction layer implementations







# Driver implemented through system calls

The main idea is to assume Linux Device Driver model. Access to a device is realized through implementation of standard system calls [1].





- Drivers
  - Introduction
  - Architecture
- 2 Models
  - Models
  - Straightforward implementation
  - Logic with hardware abstraction layer
  - Multiple abstraction layers
  - Driver implemented through system calls
- Software implementation
  - Hardware abstraction layer implementations
- 4 Quiz
  Wro-law University
  of Science and Technology



### Techniques

One of the most important things when a driver is being implemented is a choice of the hardware decoupling method. It can be done using different techniques.





Quiz

- Orivers
  - Introduction
  - Architecture
- 2 Models
  - Models
  - Straightforward implementation
  - Logic with hardware abstraction layer
  - Multiple abstraction layers
  - Driver implemented through system calls
- Software implementation
  - Hardware abstraction layer implementations







Quiz

# Quiz (1/1)

Calculate group number as the rest from dividing the Student ID number by 4.

#### Example

Student ID number is 123456, thus the group is 0. Take last 2 digits from Student ID number (56) and calculate the rest from dividing by 4 (56 % 4 = 0).

Write down your name, Student ID number and group.





# Literature (1/1)



J. Corbet, A. Rubini, and G. Kroah-Hartman. *Linux Device Drivers, Third Edition*. O'Reilly Media, Inc., 2005.





Quiz