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Modelling
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Figure: 3R rigid manipulator

q = [q1,q2,q3]T , q ∈ Rn, n = 3. (1)
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Modelling

Control engineering and robotics

input state output

ẋ = Ax + Bu y = CT x

differential
equations

algebraic
equation

Figure: Control engineering

input state output

Mq̈ + Cq̇ + D + T = u y = k(q)

dynamics kinematics

Figure: Robotics
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Modelling

Kinematics (1/2)

A 3R robotic arm can follow a trajectory in a 3D space
associated with the global coordination system X0Y0Z0 marked
in Fig. 1. Placement of the manipulator mount point is in
XbYbZb.
Transformations from X0Y0Z0 to XbYbZb is defined as

Ab
0 = Trans(X ,a)Trans(Y ,b)Trans(Z , c). (2)
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Modelling

Kinematics (2/2)

End of the 1st manipulator link is in relation to global
coordination system X0Y0Z0 expressed as

A1
0 = Ab

0Rot(Z ,q1)Trans(X , l1). (3)

The 2nd link location is described as

A2
0 = A1

0Rot(Z ,q2)Trans(X , l2)Rot(X ,
π

2
). (4)

The position of 3rd link, the end effector, is presented in the
following relation

A3
0 = A2

0Rot(Z ,q3)Trans(X , l3). (5)
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Modelling

Dynamics (1/7)

The manipulator dynamics can be expressed as [5]

Mq̈ + Cq̇ + D + T = u (6)

where

M ∈ Rn×n is an inertia matrix,

C ∈ Rn×n is a Coriolis and centrifugal forces matrix,

D ∈ Rn is a gravitation vector,

T ∈ Rn is a friction vector,

u ∈ Rn is an input control vector.
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Modelling

Dynamics (2/7)

Properties of the dynamics model [2]:
1 The M matrix is symmetric (M = MT ) and is positively

defined (M > 0). It means that all eigenvalues of M are
positive. Thus, the M matrix is invertible and not singular.

2 There is a skew symmetry between M and C.

Ṁ = C + CT (7)
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Modelling

Dynamics (3/7)

To calculate inertia matrix M we have to calculate kinetic
energy for each link. It can be calculated with following formula

Ei =
1
2

tr{Ȧi
0Ji(Ȧi

0)T} =
1
2

q̇T Qi q̇. (8)

The Ji is a pseudoinertia matrix of ith link and the Qi is inertia
matrix for ith link.
Ji can be calculated in following way

Ji =


∫

Li
x2dm

∫
Li

xydm
∫

Li
xzdm mi x̄i∫

Li
yxdm

∫
Li

y2dm
∫

Li
yzdm mi ȳi∫

Li
zxdm

∫
Li

zydm
∫

Li
z2dm mi z̄i

mi x̄i mi ȳi mi z̄i mi

 . (9)
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Modelling

Dynamics (4/7)

The integrals are the inertia moments calculated at the end of
the link while (x̄i , ȳi , z̄i) is the placement of the center of mass
of the link in local coordinate system.
Thus, the inertia matrix M of the system is a sum of inertia
matrices of each link

M =
n∑

i=1

Qi . (10)
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Modelling

Dynamics (5/7)

The Coriolis matrix can be calculated from the inertia matrix M
by using the Christoffel symbols of first kind. C ∈ Rn×n and
each element of the matrix is equal to

Cij(q, q̇) =
n∑

k=1

c i
kj(q)q̇k ,

where

c i
kj(q) =

1
2

(
∂Mij

∂qk
+
∂Mik

∂qj
−
∂Mjk

∂qi

)
. (11)
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Modelling

Dynamics (6/7)

We can calculate gravity vector D with following formula [4]

Di = −
n∑

k=i

mk

〈
g,
∂A0i

∂qi
Ri

〉
(12)

where g = [gx ,gy ,gz ,0]T and Ri = [x̄i , ȳi , z̄i ,1]T .
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Modelling

Dynamics (7/7)

Lastly, to calculate friction forces in the manipulator joints we
can use Tustin friction model [1]

T (q̇) = Tv q̇ + Tssgn(q̇) (13)

where Tv is a viscous friction coefficient while Ts is a static
friction coefficient.

Implementation

However, the non-linear function sgn() should be replaced
rather with tanh() or arctan() because of computation reasons
based on

lim
x→+∞

tanh(scx) = sgn(x) (14)

where sc > 0 and defines how closely sgn(x) is approximated.
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Input-output decoupling

Motivation

Input-output decoupling is a method which enables one to
control end-effector’s trajectory. It other words, it translates
desired trajectory given in task coordinates like (X0,Y0,Z0) into
joint space q.

What is more, the input-output decoupling can be used instead
of inverse kinematics.
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Input-output decoupling

Algorithm (1/5)

Let
yi = ki(q), i = 1, . . . ,n (15)

where ki(q) is ith element of end-effector kinematics vector.
Then

ẏi =
d
dt

ki(q) =
∂ki

∂q
dq
dt

= Ji(q)q̇. (16)

The time derivative of above equation gives

ÿi =
d2

dt2 ki(q) = J̇i(q)q̇ + Ji(q)q̈

= q̇T ∂
2ki

∂q2 q̇ + Ji q̈ = Pi + Ji q̈. (17)
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Input-output decoupling

Algorithm (2/5)

By collecting all output variables we obtain a following matrix
equation

ÿ = P + Jq̈. (18)

Let’s consider dynamics of the manipulator (6). The real inertia
matrix M is always positively defined, therefore we can
reformulate (6) to

q̈ = M−1 (u − Cq̇ − D − T ) . (19)

After substitution of dynamic equation (19) to (18) it yields

ÿ = P + JM−1 (u − Cq̇ − D − T )

= P − JM−1Cq̇ − JM−1D − JM−1T + JM−1u. (20)
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Input-output decoupling

Algorithm (3/5)

The equation (20) is an affine system with following equation

ÿ = F + Gu (21)

where

F = P − JM−1Cq̇ − JM−1D − JM−1T , (22)

G = JM−1. (23)

We assume that G is square and invertible. Therefore, the J
has to be square and invertible, too.
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Input-output decoupling

Algorithm (4/5)

Injecting the control law given below as

u = G−1 (−F + v) (24)

to the affine system (21), where v is a new input to the system,
we obtain the closed-loop system expressed in the form of
double linear integrator.

ÿ = v .
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Input-output decoupling

Algorithm (5/5)

To ensure that the desired trajectory is followed with
end-effector by moving only its joints we propose PD controller
with correction

v = ÿd − Kd ė − Kpe (25)

where yd is a desired trajectory of the end-effector,
Kp = K T

p > 0, Kd = K T
d > 0, and the system error is defined as

e = y − yd and its time derivative equals to ė = ẏ − ẏd .
To ensure that the procedure of input-output decoupling is
possible, the necessary condition defined by Isidori has to be
met [3]. It says that the number of inputs to the system has to
be equal to the number of system’s outputs.
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Simulations

Results (1/2)
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Figure: Errors between real and desired trajectory in task space
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Simulations

Results (2/2)
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Figure: Real and desired trajectory
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Simulations

Matlab

Model of dynamics is defined as a set of 1st order differential
equations. It means that instead of simulating dynamics which
is given as

q̈ = f (q, q̇, t)

we have to rewrite equations to a set of 1st order differential
equations, e.g.

qd ,0 = q,
qd ,1 = q̇d ,0,

qd ,2 = q̇d ,1,

...
qd ,n = q̇d ,n−1,

qd ,n = g(qd ,0,qd ,1, . . . ,qd ,n−1, t).
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Simulations

Ordinary differential equation (ODE) (1/2)

Calling ODE solver in Matlab can be done with following
instructions

1 modelNameFun = s t r2 func ( ’ model ’ ) ;
2 opts = odeset ( ’ RelTol ’ ,1e−6, ’ AbsTol ’ ,1e−6) ;
3 opts = odeset ( opts , ’ OutputFcn ’ , ’ odep lo t ’ ) ;
4 [ t , youtput ] = ode45 (@( t , y ) modelNameFun ( t , y , parameters ) , . . .
5 [ 0 : sample_time : tEnd ] , i c , opts ) ;
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Simulations

Ordinary differential equation (ODE) (2/2)

The model function should comply with requirements of an
ODE function model.

1 f u n c t i o n [ output_args , a d d i t i o n a l ] = model ( t , input_args ,
parameters )

2 qr_d1 = input_args ( 1 : 3 ) ;
3 qr = input_args ( 4 : 6 ) ;
4 % . . .
5 output_args = zeros (6 ,1 ) ;
6 output_args ( 1 : 3 ) = qr_d2 ;
7 output_args ( 4 : 6 ) = qr_d1 ;
8 a d d i t i o n a l . param = param1 ;
9 a d d i t i o n a l . vec to r = vector1 ;
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Simulations

Literature (1/2)

H. Berghuis.
Model-based Robot Control: from Theory to Practice.
CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG,
1993.

I. Dulęba.
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Simulations
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