
1/26

Advanced Robot Control
Input-output decoupling

Wojciech Domski

Chair of Cybernetics and Robotics,
Wrocław University of Science and Technology

Presentation compiled for taking notes during lecture

Wojciech Domski Advanced Robot Control

2/26

Outline

1 Modelling

2 Input-output decoupling

3 Simulations

Wojciech Domski Advanced Robot Control

3/26

Modelling

Object

q1

q2

q3

X0

Z0

Y0

l1

l2

l3

a

c

b

Xb

Zb
Yb

Figure: 3R rigid manipulator

q = [q1,q2,q3]T , q ∈ Rn, n = 3. (1)

Wojciech Domski Advanced Robot Control

4/26

Modelling

Control engineering and robotics

input state output

ẋ = Ax + Bu y = CT x

differential
equations

algebraic
equation

Figure: Control engineering

input state output

Mq̈ + Cq̇ + D + T = u y = k(q)

dynamics kinematics

Figure: Robotics

Wojciech Domski Advanced Robot Control

5/26

Modelling

Kinematics (1/2)

A 3R robotic arm can follow a trajectory in a 3D space
associated with the global coordination system X0Y0Z0 marked
in Fig. 1. Placement of the manipulator mount point is in
XbYbZb.
Transformations from X0Y0Z0 to XbYbZb is defined as

Ab
0 = Trans(X ,a)Trans(Y ,b)Trans(Z , c). (2)

Wojciech Domski Advanced Robot Control

6/26

Modelling

Kinematics (2/2)

End of the 1st manipulator link is in relation to global
coordination system X0Y0Z0 expressed as

A1
0 = Ab

0Rot(Z ,q1)Trans(X , l1). (3)

The 2nd link location is described as

A2
0 = A1

0Rot(Z ,q2)Trans(X , l2)Rot(X ,
π

2
). (4)

The position of 3rd link, the end effector, is presented in the
following relation

A3
0 = A2

0Rot(Z ,q3)Trans(X , l3). (5)

Wojciech Domski Advanced Robot Control

7/26

Modelling

Dynamics (1/7)

The manipulator dynamics can be expressed as [5]

Mq̈ + Cq̇ + D + T = u (6)

where

M ∈ Rn×n is an inertia matrix,

C ∈ Rn×n is a Coriolis and centrifugal forces matrix,

D ∈ Rn is a gravitation vector,

T ∈ Rn is a friction vector,

u ∈ Rn is an input control vector.

Wojciech Domski Advanced Robot Control

8/26

Modelling

Dynamics (2/7)

Properties of the dynamics model [2]:
1 The M matrix is symmetric (M = MT) and is positively

defined (M > 0). It means that all eigenvalues of M are
positive. Thus, the M matrix is invertible and not singular.

2 There is a skew symmetry between M and C.

Ṁ = C + CT (7)

Wojciech Domski Advanced Robot Control

9/26

Modelling

Dynamics (3/7)

To calculate inertia matrix M we have to calculate kinetic
energy for each link. It can be calculated with following formula

Ei =
1
2

tr{Ȧi
0Ji(Ȧi

0)T} =
1
2

q̇T Qi q̇. (8)

The Ji is a pseudoinertia matrix of ith link and the Qi is inertia
matrix for ith link.
Ji can be calculated in following way

Ji =


∫

Li
x2dm

∫
Li

xydm
∫

Li
xzdm mi x̄i∫

Li
yxdm

∫
Li

y2dm
∫

Li
yzdm mi ȳi∫

Li
zxdm

∫
Li

zydm
∫

Li
z2dm mi z̄i

mi x̄i mi ȳi mi z̄i mi

 . (9)

Wojciech Domski Advanced Robot Control

10/26

Modelling

Dynamics (4/7)

The integrals are the inertia moments calculated at the end of
the link while (x̄i , ȳi , z̄i) is the placement of the center of mass
of the link in local coordinate system.
Thus, the inertia matrix M of the system is a sum of inertia
matrices of each link

M =
n∑

i=1

Qi . (10)

Wojciech Domski Advanced Robot Control

11/26

Modelling

Dynamics (5/7)

The Coriolis matrix can be calculated from the inertia matrix M
by using the Christoffel symbols of first kind. C ∈ Rn×n and
each element of the matrix is equal to

Cij(q, q̇) =
n∑

k=1

c i
kj(q)q̇k ,

where

c i
kj(q) =

1
2

(
∂Mij

∂qk
+
∂Mik

∂qj
−
∂Mjk

∂qi

)
. (11)

Wojciech Domski Advanced Robot Control

12/26

Modelling

Dynamics (6/7)

We can calculate gravity vector D with following formula [4]

Di = −
n∑

k=i

mk

〈
g,
∂A0i

∂qi
Ri

〉
(12)

where g = [gx ,gy ,gz ,0]T and Ri = [x̄i , ȳi , z̄i ,1]T .

Wojciech Domski Advanced Robot Control

13/26

Modelling

Dynamics (7/7)

Lastly, to calculate friction forces in the manipulator joints we
can use Tustin friction model [1]

T (q̇) = Tv q̇ + Tssgn(q̇) (13)

where Tv is a viscous friction coefficient while Ts is a static
friction coefficient.

Implementation

However, the non-linear function sgn() should be replaced
rather with tanh() or arctan() because of computation reasons
based on

lim
x→+∞

tanh(scx) = sgn(x) (14)

where sc > 0 and defines how closely sgn(x) is approximated.

Wojciech Domski Advanced Robot Control

14/26

Input-output decoupling

Motivation

Input-output decoupling is a method which enables one to
control end-effector’s trajectory. It other words, it translates
desired trajectory given in task coordinates like (X0,Y0,Z0) into
joint space q.

What is more, the input-output decoupling can be used instead
of inverse kinematics.

Wojciech Domski Advanced Robot Control

15/26

Input-output decoupling

Algorithm (1/5)

Let
yi = ki(q), i = 1, . . . ,n (15)

where ki(q) is ith element of end-effector kinematics vector.
Then

ẏi =
d
dt

ki(q) =
∂ki

∂q
dq
dt

= Ji(q)q̇. (16)

The time derivative of above equation gives

ÿi =
d2

dt2 ki(q) = J̇i(q)q̇ + Ji(q)q̈

= q̇T ∂
2ki

∂q2 q̇ + Ji q̈ = Pi + Ji q̈. (17)

Wojciech Domski Advanced Robot Control

16/26

Input-output decoupling

Algorithm (2/5)

By collecting all output variables we obtain a following matrix
equation

ÿ = P + Jq̈. (18)

Let’s consider dynamics of the manipulator (6). The real inertia
matrix M is always positively defined, therefore we can
reformulate (6) to

q̈ = M−1 (u − Cq̇ − D − T) . (19)

After substitution of dynamic equation (19) to (18) it yields

ÿ = P + JM−1 (u − Cq̇ − D − T)

= P − JM−1Cq̇ − JM−1D − JM−1T + JM−1u. (20)

Wojciech Domski Advanced Robot Control

17/26

Input-output decoupling

Algorithm (3/5)

The equation (20) is an affine system with following equation

ÿ = F + Gu (21)

where

F = P − JM−1Cq̇ − JM−1D − JM−1T , (22)

G = JM−1. (23)

We assume that G is square and invertible. Therefore, the J
has to be square and invertible, too.

Wojciech Domski Advanced Robot Control

18/26

Input-output decoupling

Algorithm (4/5)

Injecting the control law given below as

u = G−1 (−F + v) (24)

to the affine system (21), where v is a new input to the system,
we obtain the closed-loop system expressed in the form of
double linear integrator.

ÿ = v .

Wojciech Domski Advanced Robot Control

19/26

Input-output decoupling

Algorithm (5/5)

To ensure that the desired trajectory is followed with
end-effector by moving only its joints we propose PD controller
with correction

v = ÿd − Kd ė − Kpe (25)

where yd is a desired trajectory of the end-effector,
Kp = K T

p > 0, Kd = K T
d > 0, and the system error is defined as

e = y − yd and its time derivative equals to ė = ẏ − ẏd .
To ensure that the procedure of input-output decoupling is
possible, the necessary condition defined by Isidori has to be
met [3]. It says that the number of inputs to the system has to
be equal to the number of system’s outputs.

Wojciech Domski Advanced Robot Control

20/26

Simulations

Results (1/2)

0 50 100 150 200 250 300 350 400 450

time [s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

er
ro

r
[r

ad
]

Figure: Errors between real and desired trajectory in task space

Wojciech Domski Advanced Robot Control

21/26

Simulations

Results (2/2)

-0.06
1

-0.04

-0.02

3

0

z
[m

]

0.5

0.02

y [m]

2.5

0.04

x [m]

0.06

0
2

-0.5 1.5

Figure: Real and desired trajectory

Wojciech Domski Advanced Robot Control

22/26

Simulations

Matlab

Model of dynamics is defined as a set of 1st order differential
equations. It means that instead of simulating dynamics which
is given as

q̈ = f (q, q̇, t)

we have to rewrite equations to a set of 1st order differential
equations, e.g.

qd ,0 = q,
qd ,1 = q̇d ,0,

qd ,2 = q̇d ,1,

...
qd ,n = q̇d ,n−1,

qd ,n = g(qd ,0,qd ,1, . . . ,qd ,n−1, t).

Wojciech Domski Advanced Robot Control

23/26

Simulations

Ordinary differential equation (ODE) (1/2)

Calling ODE solver in Matlab can be done with following
instructions

1 modelNameFun = s t r2 func (’ model ’) ;
2 opts = odeset (’ RelTol ’ ,1e−6, ’ AbsTol ’ ,1e−6) ;
3 opts = odeset (opts , ’ OutputFcn ’ , ’ odep lo t ’) ;
4 [t , youtput] = ode45 (@(t , y) modelNameFun (t , y , parameters) , . . .
5 [0 : sample_time : tEnd] , i c , opts) ;

Wojciech Domski Advanced Robot Control

24/26

Simulations

Ordinary differential equation (ODE) (2/2)

The model function should comply with requirements of an
ODE function model.

1 f u n c t i o n [output_args , a d d i t i o n a l] = model (t , input_args ,
parameters)

2 qr_d1 = input_args (1 : 3) ;
3 qr = input_args (4 : 6) ;
4 % . . .
5 output_args = zeros (6 ,1) ;
6 output_args (1 : 3) = qr_d2 ;
7 output_args (4 : 6) = qr_d1 ;
8 a d d i t i o n a l . param = param1 ;
9 a d d i t i o n a l . vec to r = vector1 ;

Wojciech Domski Advanced Robot Control

25/26

Simulations

Literature (1/2)

H. Berghuis.
Model-based Robot Control: from Theory to Practice.
CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG,
1993.

I. Dulęba.
Modeling and control of mobile manipulators.
In Proc. of the 6th IFAC Symposium on Robot Control,
SYROCO’00, pages 687–692, 2000.

A. Isidori.
Nonlinear Control Systems.
Springer-Verlag London, 1995.

W. Jacak and K. Tchoń.
Podstawy robotyki.
Politechnika Wrocławska, 1992 (in Polish).

Wojciech Domski Advanced Robot Control

26/26

Simulations

Literature (2/2)

K. Tchoń, A. Mazur, I. Dulȩba, R. Hossa, and
R. Muszyński.
Mobile manipulators and robots: models, motion planning,
control.
PLJ Publisher, 2000 (in Polish).

Wojciech Domski Advanced Robot Control

	Modelling
	Input-output decoupling
	Simulations

