Advanced Robot Control

Dynamic linearisation

Wojciech Domski

Chair of Cybernetics and Robotics,
Wrocaw University of Science and Technology

g/ Wroctaw University
of Science and Technology

1/37

Wojciech Domski Advanced Robot Control



o Dynamic linearisation concept
e Dynamic linearisation for unicycle

e Dynamic linearisation for kinematic vehicle

‘5} Wroctaw University
of Science and Technology
2/37
Wojciech Domski Advanced Robot Control



Dynamic linearisation concept

Dynamic linearisation is based on similar concept to static
linearisation. A set of h(q) functions is selected that cause
regularity condition to fail.

The state vector is extended to accommodate for a new
"dynamic" variable.

Finally, the dynamic decoupling matrix is calculated. The
obtained matrix needs to be non-singular, thus providing
additional constraints on the system.
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Dynamic linearisation for unicycle

h(q) linearisation functions (1/2)

Let us select following linearising functions

hy = x + ecos(6 + 9),
hy =y + esin(0 + 6). (1)

Now, let us consider a condition for which the regularity
condition was not satisfied, thus § = 7. Then
hy :X—l-ecos(G—i-g) = X — esin(0), )
h, =y + esin(f + g) =y + ecos(f).
Wodew Uy
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Dynamic linearisation for unicycle

h(q) linearisation functions (2/2)

The guidance point that lies on the unicycle axle was singular
from perspective of static linearisation. However, for dynamic
linearisation this is required condition.
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Dynamic linearisation for unicycle

Unicycle kinematics (1/1)

Let us consider kinematic of unicycle in following shape

X = Vcosf
j_/ = Vsin6 (4)
0 =w
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Dynamic linearisation for unicycle

New input to the system (1/2)

Inserting kinematics (4) into derivative of linearising functions
(3) yields

hi = X — ecosf8 = vcosf — ecosfw = cosO(v — ew)  (5)

hy =y —esinff = vsind — esinfw =sinO(v — ew)  (6)

Let us consider

X1 =V—ew (7)
X1 =W

roctaw Universi
of Science and Technology

W is the new input to the linearised system.
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Dynamic linearisation for unicycle

New input to the system (2/2)

Then derivatives of the linearising functions hold following form

{ f:n = 1 cosf

h2 = X1 sinf (8)
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Dynamic linearisation for unicycle

Extending state vector

Initially, the state vector was composed of position and
orientation

-
g=[x y 0] . (9)
Extended state vector holds additional variable x4
T
Q=[x y 6 x1] . (10)
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Dynamic linearisation for unicycle

Dynamic decoupling matrix (1/2)

hy = x4 cosQ+X1(—sin9)9:>'<1 cosf — wyqsinf (11)
hy = X1 Sin 0 + x1 cos 0 = X1 sin 0 4+ wyq cosf (12)

Let wo, = w and since wy = x4 then above can be rewritten in
matrix form

fh _ | cos 6 —xqsinf Wi (13)
ho sinf  xqcosf We )
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Dynamic linearisation for unicycle

Dynamic decoupling matrix (2/2)

Further, it can be written as

h= Ka(q)w, (14)

where K is known as dynamic decoupling matrix.
Similarly to the regularity condition for static linearisation, it is
required for Ky not to be a singular matrix and invertible, thus

det Ky # 0. (15)
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Dynamic linearisation for unicycle

Constraints (1/2)

For given linearising functions (1) the dynamic decoupling
matrix has following shape

K, = [ cosf —xqsinf } .

sinf x4 cosf (16)

Calculation of the determinant of above matrix yields
det Ky = x1 cos® 6 + x1sin? 0 = x4 <c052 0 + sin® 9) =x1. (17)
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Dynamic linearisation for unicycle

Constraints (2/2)

If we want to control dynamically linearised system

h= Ky(q)u (18)

then
x1 # 0. (19)

Equivalently

v—ew#0. (20)
The system must be constantly on the move.
The dynamic linearisation is a good choice for trajectory
tracking problems.
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Dynamic linearisation for unicycle

Diffeomorphism

If a diffeomorphism f : ge — ¢ exists between extended state
Qe and linear variables &,

g=[x y 6 xi ], (21)

¢:[h1 h2 h1 hg]Tm (22)
then there is no problem with tracking entire posture including

position and orientation which was not possible with static
linearisation.

@ncluding orientation.

Dynamic linearisation allows for full linearisation of state space E
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Dynamic linearisation for unicycle

Control low (1/2)

Given system i
h=Ka(q)u (23)

a following control low can be proposed
u= Ky (hg — Kién — Koen), (24)

where Ko and Kj are positively defined matrices, and errors are
en=h- hyand éh:h—hd.
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Dynamic linearisation for unicycle

Control low (2/2)

Let us close the control loop by injecting control low (24) into
our system (23).

h= Ky(q)Ky " (hg — Kién — Koen). (25)
h=hy — Kién — Koen. (26)
e+ Kiep + Koep = 0. (27)

Using Laplace transform
f{eh + Kjéep + Koeh} = Eh(S) <32 + Kis+ Ko) . (28)

Based on Hurwitz criteria, if Ky, K1 > 0 then (28) is Hurwitz
@)@j@égomjgslwthus the system is exponentially stable.
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Dynamic linearisation for unicycle

Real unicyle control signals (1/4)

Given following control law

Wo

()= (2)=(7) e
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( w ) — U= Ky (B — Kién — Koen), (29)

we have




Dynamic linearisation for unicycle

Real unicyle control signals (2/4)

If x1 = v — ew then
)'(1:\./—6(/:1 (31)

. Above is a concrete function calculated based on (29).

V=x1+ew (32)
and then J
V=w + ea Wo. (33)

To calculate v integration is required.

V= / <W1 + egtwg> , (34)

7 Wroctaw University vV = W- ews. 3 @ ?
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c linearisation for unicycle

Real unlcyle control signals (3/4)

Integration of wy is required to calculate real control signals. It
also introduces a delay into the system. J
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Dynamic linearisation for unicycle

Real unicyle control signals (4/4)

w = Ws is also a concrete function calculated based on control
law (29).
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Dynamic linearisation for kinematic vehicle

Kinematic vehicle (1/2)

|
|
|
|
= X X
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Dynamic linearisation for kinematic vehicle

Kinematic vehicle (2/2)

Let us consider kinematic for the object

X = Vcosf

y =vsinf

Q =Ytang ’ (36)
b —w

where v is linear velocity, / is wheel base, while ¢ is attack
angle of the steering wheel and w is angular velocity of the
rotating steering wheel.
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Dynamic linearisation for kinematic vehicle

h(q) linearisation functions (1/6)

Let us consider straightforward linearisation functions

h1 =X
ho=y. (37)

The first derivatives are directly taken from kinematics.
hy = vcosd (38)
hy = vsin (39)
Further differentiation yields
Wodow Uiy
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Dynamic linearisation for kinematic vehicle

h(q) linearisation functions (2/6)

hy = Vcosf — vsin6
hy = Vcosf — vsinfvtan ¢
hy = Vcosd — sin O tan ¢pv2 (40)

and for ho

ho = Vsinf + v cos 6

ho = Vsin@ + vcosfvtan ¢

hy = Vsin + cos 0 tan V2. (41)
‘% Wroctaw University (4>
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Dynamic linearisation for kinematic vehicle

h(q) linearisation functions (3/6)

Assuming that v = z is a new input to the system we have

hy = zcos6 — sinftan ¢v2, (42)
ho = zsin @ + cos 0 tan Gv2. (43)

Further differentiation reveals relationship between new control
inputs and state.

hy = Zzcosf — zsin 00

— cosfftan pv? —sin 6

1 dV? —sinftanp2vv  (44)
cos? ¢
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Dynamic linearisation for kinematic vehicle

h(q) linearisation functions (4/6)

Let v = zand z = wq, while ¢ = w then

.l-7'1 = Wj cosf — Zsin 00

— cosfftan pv? —sin 6 ! wV? —sinftanp2vz  (45)
2
cos= ¢

Also 6 = vtan ¢, therefore above can be further rewritten and
grouped accordingly to control input

cos? (;SVQW
— cosftan® ¢pv® — 3zvsinfvtan (46)

.f'l'1 = cosfwy; —sinf

roclfL%rl.JMVéfrgtg h 2
of Science and Technology
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Dynamic linearisation for kinematic vehicle

h(q) linearisation functions (5/6)

Ao = Zsinf + zcosh

— sin 6 tan ¢pv2 + cos 0 V2 + cosOtan g2vv  (47)

cos? ¢
Let v = zand z = wq, while ¢ = w then

.1:1.2 = Wy sinf + zcos #f

: 1
— sin fftan $pv2 + cos § ¢wvz+c059tan p2vz  (48)

cos?
Let us group above and use § = vtan ¢ relation

— ho = sinfwy +c05972V2w
‘5@ Wroctaw University COS ¢
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Dynamic linearisation for kinematic vehicle

h(q) linearisation functions (6/6)

Finally, the dynamically linearised system can be written in

matrix form.
h w-
(h;>:Kd<w1>+f, (50)
where
K cosf —sin 0(__0512¢V2 51
971 sing cos&co;zd)v2 ’ (1)

o ( — cosftan® ¢pv® — 3vzsinHtan ¢ )

== —sinftan? ¢pv3 + 3vzcosftan ¢
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Dynamic linearisation for kinematic vehicle

Constraints (1/3)

The dynamic decoupling matrix has following shape

1 V2

cos? ¢ ] ( 53)
1 V2 ’

cos? ¢

cosf —sinf

Ka = sind@ cosf

Calculation of the determinant of above matrix yields

1 2
K.y — cos 2, 2
det Ky = cos 0c052¢v + sin ecosng
2 2
v 5 .0 v
= = —. 54
p—— (cos 0 + sin 9) p— (54)
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Dynamic linearisation for kinematic vehicle

Constraints (2/3)

If we want to control dynamically linearised system

h = Ky(q)u+f (55)
then )
v
e . (56)
Equivalently
v#0
{c052¢750—>¢7é72r+k7r ’ (57)
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Dynamic linearisation for kinematic vehicle

Constraints (3/3)

v #0. (58)

The system must be constantly on the move.
The dynamic linearisation is a good choice for trajectory
tracking problems.

6 # 5 + k. (59)

The steering wheel cannot be perpendicular to the main axle. J
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Dynamic linearisation for kinematic vehicle

Control low (1/2)

Now, we have our system in following form

h = Kyu+f. (60)
Let us propose a control law for (60).

u=K;'(~f+ hg— Ko — Kién — Koen), (61)

where Kp, K1 and K> are positively defined matrices, and errors
are e, = h— hy, éh: h—hdand éh:h—};ld.

To determine if system is stable we need to apply control law
(61) to our system (60).

h = Ky( @Ky (~f+ hg — Kabp — Ki1én — Koen) + . (62)

Wroctaw University h = hd - Kgéh - K1 éh - KO eh. (6 "e’k

of Science and Technology .,

en+ Koen+ Kiep+ Koep = 0. (64
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Dynamic linearisation for kinematic vehicle

Control low (2/2)

Using Laplace transform

LLE b+ Ko+ Ky én+ Koen) = En(s) (33 + Kps? + Kis + Ko) .

(65)
Based on Hurwitz criteria, if Kp, K1, Ko > 0 then (65) is Hurwitz
polynomial, thus the system is exponentially stable.
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Dynamic linearisation for kinematic vehicle

Real kinematic vehicle control signals (1/3)

Given following control law

w. e . .
< w1 ):U:Kd1(hd—ngh—K1eh_Koeh)a (66)

we have
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Dynamic linearisation for kinematic vehicle

Real kinematic vehicle control signals (2/3)

V=w. (68)

Above is a concrete function calculated based on (66).
To calculate v integration is required.

v:// wy, (69)

Integration of wy is required to calculate real control signals. It
also introduces a delay into the system. J
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Dynamic linearisation for kinematic vehicle

Real kinematic vehicle control signals (3/3)

w = Ws is also a concrete function calculated based on control
law (66).
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Dynamic linearisation for kinematic vehicle
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